Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Respir Res ; 23(1): 105, 2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-1875011

ABSTRACT

BACKGROUND: Quantitative computed tomography (QCT) analysis may serve as a tool for assessing the severity of coronavirus disease 2019 (COVID-19) and for monitoring its progress. The present study aimed to assess the association between steroid therapy and quantitative CT parameters in a longitudinal cohort with COVID-19. METHODS: Between February 7 and February 17, 2020, 72 patients with severe COVID-19 were retrospectively enrolled. All 300 chest CT scans from these patients were collected and classified into five stages according to the interval between hospital admission and follow-up CT scans: Stage 1 (at admission); Stage 2 (3-7 days); Stage 3 (8-14 days); Stage 4 (15-21 days); and Stage 5 (22-31 days). QCT was performed using a threshold-based quantitative analysis to segment the lung according to different Hounsfield unit (HU) intervals. The primary outcomes were changes in percentage of compromised lung volume (%CL, - 500 to 100 HU) at different stages. Multivariate Generalized Estimating Equations were performed after adjusting for potential confounders. RESULTS: Of 72 patients, 31 patients (43.1%) received steroid therapy. Steroid therapy was associated with a decrease in %CL (- 3.27% [95% CI, - 5.86 to - 0.68, P = 0.01]) after adjusting for duration and baseline %CL. Associations between steroid therapy and changes in %CL varied between different stages or baseline %CL (all interactions, P < 0.01). Steroid therapy was associated with decrease in %CL after stage 3 (all P < 0.05), but not at stage 2. Similarly, steroid therapy was associated with a more significant decrease in %CL in the high CL group (P < 0.05), but not in the low CL group. CONCLUSIONS: Steroid administration was independently associated with a decrease in %CL, with interaction by duration or disease severity in a longitudinal cohort. The quantitative CT parameters, particularly compromised lung volume, may provide a useful tool to monitor COVID-19 progression during the treatment process. Trial registration Clinicaltrials.gov, NCT04953247. Registered July 7, 2021, https://clinicaltrials.gov/ct2/show/NCT04953247.


Subject(s)
COVID-19 Drug Treatment , Humans , Lung/diagnostic imaging , Lung Volume Measurements/methods , Retrospective Studies , Steroids/therapeutic use
2.
Front Med (Lausanne) ; 7: 624255, 2020.
Article in English | MEDLINE | ID: covidwho-1088909

ABSTRACT

Background: Early Warning Scores (EWS), including the National Early Warning Score 2 (NEWS2) and Modified NEWS (NEWS-C), have been recommended for triage decision in patients with COVID-19. However, the effectiveness of these EWS in COVID-19 has not been fully validated. The study aimed to investigate the predictive value of EWS to detect clinical deterioration in patients with COVID-19. Methods: Between February 7, 2020 and February 17, 2020, patients confirmed with COVID-19 were screened for this study. The outcomes were early deterioration of respiratory function (EDRF) and need for intensive respiratory support (IRS) during the treatment process. The EDRF was defined as changes in the respiratory component of the sequential organ failure assessment (SOFA) score at day 3 (ΔSOFAresp = SOFA resp at day 3-SOFAresp on admission), in which the positive value reflects clinical deterioration. The IRS was defined as the use of high flow nasal cannula oxygen therapy, noninvasive or invasive mechanical ventilation. The performances of EWS including NEWS, NEWS 2, NEWS-C, Modified Early Warning Scores (MEWS), Hamilton Early Warning Scores (HEWS), and quick sepsis-related organ failure assessment (qSOFA) for predicting EDRF and IRS were compared using the area under the receiver operating characteristic curve (AUROC). Results: A total of 116 patients were included in this study. Of them, 27 patients (23.3%) developed EDRF and 24 patients (20.7%) required IRS. Among these EWS, NEWS-C was the most accurate scoring system for predicting EDRF [AUROC 0.79 (95% CI, 0.69-0.89)] and IRS [AUROC 0.89 (95% CI, 0.82-0.96)], while NEWS 2 had the lowest accuracy in predicting EDRF [AUROC 0.59 (95% CI, 0.46-0.720)] and IRS [AUROC 0.69 (95% CI, 0.57-0.81)]. A NEWS-C ≥ 9 had a sensitivity of 59.3% and a specificity of 85.4% for predicting EDRF. For predicting IRS, a NEWS-C ≥ 9 had a sensitivity of 75% and a specificity of 88%. Conclusions: The NEWS-C was the most accurate scoring system among common EWS to identify patients with COVID-19 at risk for EDRF and need for IRS. The NEWS-C could be recommended as an early triage tool for patients with COVID-19.

3.
Ann Transl Med ; 9(1): 10, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1070025

ABSTRACT

BACKGROUND: Liver injury is common in patients with coronavirus disease 2019 (COVID-19), although its effect on patient outcomes has not been well studied. This study aimed to evaluate the effect of liver injury on the prognosis and treatment of patients with COVID-19 pneumonia. METHODS: In this retrospective, single-center study, data on 109 hospitalized patients with COVID-19 pneumonia were extracted and analyzed. The primary composite end-point event was the use of mechanical ventilation or death. RESULTS: At admission, of the 109 patients enrolled, 56 patients (51.4%) were diagnosed with severe disease, and 39 (35.8%) presented with liver injury, which mainly manifested as elevated levels of alanine aminotransferase (ALT) or aspartate aminotransferase (AST) accompanied simultaneously by an increase in the level of γ-glutamyl transferase. A primary composite end-point event occurred in 21 patients (19.3%). Liver injury was more prevalent in patients with severe disease than in those with non-severe disease (46.4% vs. 24.5%, P=0.017). However, there was no significant difference found between severe and non-severe patients in the use of mechanical ventilation, mortality, hospital stay, or use and dosage of glucocorticoids between individuals with and without liver injury (all P>0.05). The degree of disease severity (OR =7.833, 95% CI, 1.834-31.212, P=0.005) and presence of any coexisting illness (OR =4.736, 95% CI, 1.305-17.186, P=0.018) were predictable risk factors for primary composite end-point events, whereas liver injury had no significance in this aspect (OR =0.549, 95% CI, 0.477-5.156, P=0.459). CONCLUSIONS: Liver injury was more common in severe cases of COVID-19 pneumonia than in non-severe cases. However, liver injury had no negative effect on the prognosis and treatment of COVID-19 pneumonia.

SELECTION OF CITATIONS
SEARCH DETAIL